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-استيفاء كثيرة الحدود لمحل العددي لمعادلات فولتيرا، فريدىولم وفولتيرا
من النوع الثاني باستخدام تقريب برنشتاين المجزأة فريدىولم التكاممية  

 
شنتو *عمي جمال   

 (0102/ 09/0تاريخ النشر  – 0102 /9/01 )تاريخ الإيداع 
 

 □ممخّص  □
 

فريدىولم  -ييدف ىذا البحث إلى دراسة الحل العددي لممعادلات التكاممية من نوع فولتيرا، فريدىولم وفولتيرا
من النوع الثاني واستيفاء كثيرة الحدود الخاصة بو، لمقيام بذلك تم اقتراح طريقة عددية مبنية عمى كثيرة  المجزأةالتكاممية 

الثلاثة من المعادلات التكاممية المذكورة لتحويل المعادلة التكاممية إلى نظام  الأنماطحدود برنشتاين يتم تطبيقيا عمى 
تم تطبيق الخوارزمية المقترحة عمى  ره يقودنا إلى الحل التقريبي.، والذي بدو خطي من المعادلات يمكن حمو جبرياً 

 ،صيغة موحدة تمكن من إيجاد حل تقريبي لمعادلة فولتيرا التكاممية من النوع الثاني لإنشاء Mathematicaبرنامج
من النوع الثاني، واستيفاء  ةالمجزأفريدىولم التكاممية -وأيضاً معادلة فولتيرا ،معادلة فريدىولم التكاممية من النوع الثانيو 

كثيرة الحدود لمحل في آن معاً. تم تطبيق عدة أمثمة عددية عمى الأنواع الثلاثة من المعادلات ومقارنتيا مع طرق 
فعالية الطريقة المقترحة في إيجاد  العددية من المعادلات، أظيرت النتائج الأنماطعددية أخرى ساىمت في حل نفس 

 .حل تقريبي واستيفاء كثيرة الحدود الخاصة بالحل، وذلك بمقدار خطأ صغير جداً وسرعة كبيرة في الأداء
من النوع الثاني، تقريب برنشتاين، الاستيفاء، معادلة  المجزأةفريدىولم التكاممية -: معادلة فولتيراالكممات المفتاحية

 مية، معادلة فولتيرا التكاممية.فريدىولم التكام
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□ ABSTRACT □ 

This paper aims to study the numerical solution of Volterra, Fredholm, and 

Volterra-Fredholm integral equations of the second kind and its polynomial 

interpolation. To do this, a numerical method based on Bernstein polynomials was 

proposed and applied to the three types of integral equations to transform the integral 

equation into a linear system of equations that can be solved algebraically Leading us 

to the approximate solution. The proposed algorithm was applied to the Mathematica 

program to create a unified formula that enables us to find an approximate solution to 

the Volterra integral equation of the second kind, the Fredholm integral equation of 

the second kind, and also the disjoint form of the Volterra-Fredholm integral equation 

of the second kind, and polynomial interpolation of the solution at the same time. 

Several numerical examples were applied to the three types of equations and 

compared with other numerical methods that contributed to solving the same kind of 

equations. The numerical results showed the effectiveness of the proposed method in 

finding an approximate solution and interpolating the polynomial of the solution, 

with minimal error and high speed in performance. 

Keywords:   Disjoint Volterra-Fredholm Integral Equation of The Second Kind, Bernstein 

Approximation, Interpolation, Fredholm Integral Equation, Volterra Integral Equation. 
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 مقدمة:
المعادلات التي تتضمن دالة مجيولة تظير تحت إشارة التكامل، تمثل ىذه ىي المعادلات التكاممية      

وفر تقنية قوية المعادلات أىمية كبيرة عمى نطاق واسع في مجالات متنوعة من الرياضيات التطبيقية والفيزياء، فيي ت
المعادلات التكاممية في أنظمة التحكم الأمثل عمى سبيل المثال تستخدم  .[1]لحل مجموعة متنوعة من المسائل العممية 

معادلة فولتيرا التكاممية في الكثير من التطبيقات الفيزيائية م ، تستخد[4]وميكانيكا الموائع  [3]، الاقتصاد الرياضي [2]
، أما معادلة فريدىولم وغيرىا من التطبيقات الميمة [6]ومسائل المرونة الكيربائية  [5]ة التوصيل الحراري ألمسمثل 

م بشكل كبير في حل مسائل القيم الابتدائية ومسائل القيم الحدية، وذلك من خلال تحويميا إلى التكاممية فيي تساى
من النوع الثاني ليا دور كبير في وصف فريدىولم التكاممية -وأيضاً معادلات فولتيرا، [7]معادلات تكاممية مكافئة 

 [9]،  [8] العديد من الظواىر الفيزيائية في مجال المرونة ومسائل الاتصال ومسائل الثوابت المرنة والتوصيل الجزيئي
 .[10]و 

فقد قام قدم الباحثون مؤخراً العديد من الأبحاث التي تقترح طرائق عددية لحل المعادلات التكاممية، 
Maleknejad  وAghazadeh  بإيجاد الحل العددي لمعادلة فولتيرا التكاممية من النوع الثاني عن طريق  [11]في

المعادلة التكاممية عددياً بحل  Davariو  Babolian قام [12]نواة الالتفاف باستخدام منشور متسمسمة تايمور، وفي 
بتقديم طريقة مبنية عمى الاستيفاء لحل معادلة  [13]وآخرون في  Yusufoglu، كما قام تجزئة أدوميان بناءً عمى

تم تقديم طريقة مبنية عمى نظرية القيمة المتوسطة التكاممية لحل معادلة  [14]، وفي فريدىولم التكاممية الخطية-فولتيرا
 فريدىولم من النوع الثاني.

، في إيجاد حل تقريبي لممعادلات التكاممية [16]و  [15]اعتمد العديد من الباحثين عمى كثيرات حدود برنشتاين 
لإيجاد الحل  block-pulseحيث تم اقتراح طريقة تجمع بين كثيرات حدود برنشتاين المتعامدة وتوابع  [17]كما في 

تم الاستفادة من كثيرات حدود برنشتاين لحل معادلة فريدىولم  [18]فريدىولم التكاممية، وفي -العددي لمعادلة فولتيرا
باستخدام كثيرات حدود برنشتاين المتعامدة في حل  [19]وآخرون في  Biazarوقام التكاممية من النوع الثاني عددياً، 

 معادلة فولتيرا التكاممية من النوع الثاني عددياً.
لإنشاء خوارزمية  قميلًا عن الأبحاث الأخرى في ىذا البحث، سيتم الاستفادة من تقريب برنشتاين بشكل مختمف

لإيجاد الحل العددي التقريبي لممعادلات التكاممية المختمفة  Mathematicaعددية موحدة يتم تطبيقيا عمى لغة البرمجة 
في واستيفاءه عمى شكل كثيرة حدود يمكن استخداميا في التطبيقات الأخرى، وذلك نظراً لأىمية كثيرات الحدود 

 ، ليتم بعد ذلك مقارنة النتائج العددية مع نتائج الطرق الأخرى.وسيولة التعامل معياالمجالات العممية 
 [20]:التاليةفريدىولم التكاممية من النوع الثاني ذات الصيغة المجزأة -تم دراسة معادلة فولتيرا ،في ىذا البحث

(
1) 𝑓(𝑥) = 𝑔(𝑥) + 𝛼 ∫ 𝑘1(𝑥, 𝑡)𝑓(𝑡) 𝑑𝑡 + 𝛽 ∫ 𝑘2(𝑥, 𝑡)𝑓(𝑡) 𝑑𝑡.

𝑏

𝑎

𝑥

𝑎

 
 

,𝑔(𝑥)  ،𝑘1(𝑥مخالفة لمصفر، حيث أن  𝛽و  𝛼وذلك من أجل قيم حقيقية أو عقدية لـ  𝑡)  و𝑘2(𝑥, 𝑡)   ىي
,𝑎,توابع مستمرة وقابمة للاشتقاق عمى المجال  𝑏-. 

𝛽بفرض  =  نحصل عمى معادلة فولتيرا التكاممية من النوع الثاني: (1)في المعادلة  0
(

2) 𝑓(𝑥) = 𝑔(𝑥) + 𝛼 ∫ 𝑘1(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡.

𝑥

𝑎
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𝛼أيضاً، بفرض  = نحصل عمى معادلة فريدىولم التكاممية من النوع الثاني  (1)في المعادلة  0
 بالصيغة التالية:

(
3) 𝑓(𝑥) = 𝑔(𝑥) + 𝛽 ∫ 𝑘2(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡.

𝑏

𝑎

 
 

بتقريب برنشتاين في المعادلة التكاممية  𝑓الفكرة الأساسية لمخوارزمية المقترحة ىي تبديل الدالة المجيولة 
الخاص بيا، والذي سوف يتم تقديمة تالياً، وذلك لمحصول عمى نظام خطي من المعادلات يساعد في الوصول 

 حدود.لمحل التقريبي لممعادلة التكاممية واستيفاءه عمى شكل كثيرة 
 Importance of Research and its Objectivesأىمية البحث وأىدافو: 

ييدف ىذا البحث إلى تطوير خوارزمية بسيطة وفعالة في آن معاً لإيجاد الحل العددي لمعادلة       
فريدىولم المجزأة التكاممية من النوع الثاني، وذلك نظراً لشيرتيا الواسعة -فولتيرا ومعادلة فريدىولم ومعادلة فولتيرا

سيتم أيضاً تطبيق الطريقة عمى لغة البرمجة  الرياضية والفيزيائية الحديثة.وأىميتيا الكبيرة في التطبيقات 
Mathematica  ضمن خوارزمية موحدة لاستنتاج الحل التقريبي لممعادلات المطروحة واستيفاءه عمى شكل

كثيرة حدود، وذلك لسيولة الاستفادة من كثيرات الحدود في الدراسات الرياضية والتطبيقات المختمفة، سيتم 
ق الأخرى التي ائمن خلال الرسم البياني ودراسة الخطأ والمقارنة مع نتائج بعض الطر  اختبار الفعالية التطبيقية

 ساىمت في حل نفس النوع من المعادلات.
 Methodology: طرائق البحث ومواده

كذلك  ،Mathematicaتعتمد طرائق البحث عمى تقنيات الحل العددي والخوارزميات والبرمجة في      
بالإضافة لبعض المفاىيم الرياضية مثل كثيرات حدود برنشتاين والتقريب الخاص بيا، كما تم الاطلاع عمى 
بعض الأساليب والتقنيات العددية المذكورة في المراجع العممية الحديثة التي تطرقت لحل مسائل من الأنماط 

 المطروحة.
 تقريب برنشتاين:

ة مفيدة وميمة لمغاية وذلك بسبب تعريفيا البسيط، سرعة حسابيا عمى تعد كثيرات الحدود أدوات رياضي
حدود ات حققت كثير ، [21] قدرتيا الكبيرة عمى تمثيل مجموعة مختمفة من التوابعأيضاً أنظمة الكمبيوتر و 

شيرة واسعة في التطبيقات الرياضية وأيضاً مجالات التصميم اليندسي بمساعدة الحاسوب الحديث برنشتاين 
بزمن طويل قدم عالم الرياضيات الروسي، ، ولكن قبل ذلك [22]تم استخداميا في تصميم السيارات  حين

سيرجي ناتانوفيتش برنشتاين، قاعدة كثيرات حدود برنشتاين كوسيمة لإعطاء أول إثبات استدلالي لنظرية تقريب 
 .[23]تراس شفاير 

,𝑎,يتم تعريف كثيرة حدود برنشتاين عمى المجال  𝑏- :[24]بالشكل التالي 
(

4) 
𝑃𝑛,𝑖(𝑥) = .

𝑛
𝑖

/
(𝑥 − 𝑎)𝑖(𝑏 − 𝑥)𝑛−𝑖

(𝑏 − 𝑎)𝑛
  ; 0 ≤ 𝑖 ≤ 𝑛  

باستخدام لغة البرمجة  متغير.  𝑥كثيرة الحدود و  دليل تمثل  𝑖 الحدود،ىي درجة كثيرة  𝑛حيث 
Mathematica  وذلك من أجل  -0,1,كثيرات حدود برنشتاين عمى المجال  (1)يمكن أن نرى في الشكل

𝑛 = 4. 
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,𝟎,عمى المجال الخمس الأولى  : رسم توضيحي لكثيرات حدود برنشتاين(0)الشكل  𝟏- . 

:𝑓يتم تقريب التابع  ,𝑎, 𝑏- → 𝑅  [25]برنشتاين بالصيغة التالية: كثيرة حدودبواسطة 
(

5) 
𝐵𝑛(𝑓(𝑥)) = ∑ 𝑐𝑖 𝑝𝑛,𝑖(𝑥)

𝑛

𝑖=0

  

إثبات أنو من  [26]، تم في (4)معرفة كما في العلاقة  𝑝𝑛,𝑖(𝑥)عبارة عن ثوابت سيتم حسابيا و  𝑐𝑖حيث 
,𝑎,قابل للاشتقاق عمى المجال  𝑓(𝑥)أجل أي تابع  𝑏-  تتقارب المتتالية*𝐵𝑛(𝑓); 𝑛 = 1,2,3, … من التابع  +

𝑓(𝑥) حيث ،𝐵𝑛(𝑓)  درجة  وجود، وىذا يؤدي إلى (5)معرفة كما في العلاقة𝑛  تحقق أنو من أجل أي تابع قابل
𝜀ومن أجل أي مقدار صغير  -0,1,للاشتقاق عمى المجال  >  يكون: 0

(
6) 

‖𝐵𝑛(𝑓) − 𝑓‖ < 𝜀  

‖𝑓‖أكبر من المقدار  𝑛إثبات أن ىذه الدرجة  [27]وقد تم في الفصل الأول من 

𝛿2𝜖
ىي مقدار  𝛿، حيث أن 

. ‖صغير موجب و   . 𝑅ىو النظيم الإقميدي المعرف عمى الفضاء الخطي   ‖
 :فريدىولم التكاممية من النوع الثاني-لمعادلة فولتيرا تقنية الحل العددي

بتقريب برنشتاين  (1)المعرفة في العلاقة فريدىولم التكاممية -معادلة فولتيرافي  𝑓(𝑥)بتبديل الدالة المجيولة 
 ، نجد أن:(5)المعرف في العلاقة  𝐵𝑛(𝑓)الخاص بيا 

(
7) ∑ 𝑐𝑖 𝑝𝑛,𝑖(𝑥)

𝑛

𝑖=0

= 𝑔(𝑥) + 𝛼 ∫ 𝑘1(𝑥, 𝑡) ∑ 𝑐𝑖 𝑝𝑛,𝑖(𝑡)𝑑𝑡 + 𝛽 ∫ 𝑘2(𝑥, 𝑡) ∑ 𝑐𝑖 𝑝𝑛,𝑖(𝑡)𝑑𝑡 ,

𝑛

𝑖=0

𝑏

𝑎

𝑛

𝑖=0

𝑥

𝑎

 
 

 نحصل عمى: (4)في العلاقة  كما تم تعريفيا  𝑝𝑛,𝑖(𝑥)بتبديل كثيرة حدود برنشتاين 
(

8) ∑ 𝑐𝑖

.
𝑛
𝑖

/

(𝑏 − 𝑎)𝑛
 (𝑥 − 𝑎)𝑖(𝑏 − 𝑥)𝑛−𝑖

𝑛

𝑖=0

− 𝛼 ∫ 𝑘1(𝑥, 𝑡) ∑ 𝑐𝑖

.
𝑛
𝑖

/

(𝑏 − 𝑎)𝑛

𝑛

𝑖=0

𝑥

𝑎

(𝑡 − 𝑎)𝑖(𝑏 − 𝑡)𝑛−𝑖𝑑𝑡

− 𝛽 ∫ 𝑘2(𝑥, 𝑡)

𝑏

𝑎

∑ 𝑐𝑖

.
𝑛
𝑖

/

(𝑏 − 𝑎)𝑛

𝑛

𝑖=0

 (𝑡 − 𝑎)𝑖(𝑏 − 𝑡)𝑛−𝑖𝑑𝑡 = 𝑔(𝑥) , 
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∑الآن بإخراج المقدار  𝑐𝑖

.
𝑛
𝑖

/

(𝑏−𝑎)𝑛
𝑛
𝑖=0  ما يمي: (8)كعامل مشترك، ينتج عن المعادلة 

(
9) ∑ 𝑐𝑖

.
𝑛
𝑖

/

(𝑏 − 𝑎)𝑛

𝑛

𝑖=0

*(𝑥 − 𝑎)𝑖(𝑏 − 𝑥)𝑛−𝑖 − 𝛼 ∫ 𝑘1(𝑥, 𝑡)

𝑥

𝑎

(𝑡 − 𝑎)𝑖(𝑏 − 𝑡)𝑛−𝑖𝑑𝑡

− 𝛽 ∫ 𝑘2(𝑥, 𝑡)

𝑏

𝑎

 (𝑡 − 𝑎)𝑖(𝑏 − 𝑡)𝑛−𝑖𝑑𝑡+ = 𝑔(𝑥) , 

 

𝜀من أجل مقدار صغير جداً  >  حيث: 𝑥𝑗بـ  (9)في العلاقة  𝑥تبديل كل عند ، 0
(

10) 𝑥𝑗 = ,

𝑗

𝑛
+ 𝜀 ; 𝑗 = 0,1,2, … 𝑛 − 1,

 
1 − 𝜀 ;                        𝑗 = 𝑛.

 
 

;𝑥𝑗من أجل  𝑗 = 0,1, … , 𝑛 باستثناء القيم المفردة  -0,1,اختيار أي قيم أخرى ضمن المجال  يمكننا
( وذلك لسيولة تعريفيا تمقائياً في 11، ولكن تم صياغتيا بيذا الشكل في العلاقة )لممعادلة التكاممية المُراد حميا

 .Mathematicaلغة البرمجة 
𝐴𝑋يتم الحصول عمى جممة خطية من المعادلات  بعد ذلك = 𝑌   حيث𝑌  مصفوفة الطرف الأيمن و

𝐴  ىي مصفوفة الأمثال التي تم حسابيا لإيجاد مصفوفة المجاىيل𝑋  مكونة من ، ىذه الجممة الخطية𝑛 + 1 
𝑛معادلة بالإضافة إلى  +  مجيول، معرفة عمى النحو التالي: 1

(
11) 𝐴 = *

.
𝑛
𝑖

/

(𝑏 − 𝑎)𝑛
((𝑥𝑗 − 𝑎)

𝑖
(𝑏 − 𝑥𝑗)

𝑛−𝑖
− 𝛼 ∫ 𝑘1(𝑥𝑗 , 𝑡)

𝑥𝑗

𝑎

(𝑡 − 𝑎)𝑖(𝑏 − 𝑡)𝑛−𝑖𝑑𝑡

− 𝛽 ∫ 𝑘2(𝑥𝑗 , 𝑡)

𝑏

𝑎

 (𝑡 − 𝑎)𝑖(𝑏 − 𝑡)𝑛−𝑖𝑑𝑡)+ , 𝑖, 𝑗 = 0,1, … 𝑛 , 

 

(
12) 

𝑋 = ,𝑐𝑖-
𝑇 , 𝑖 = 0,1, … , 𝑛   

(
13) 

𝑌 = [𝑔(𝑥𝑗)]
𝑇

 , 𝑗 = 0,1, … , 𝑛 .  

𝑖من أجل  𝑐𝑖عمى قيم الثوابت المجيولة  يتم الحصولبحل جممة المعادلات  = 0,1, … 𝑛 حيث يتم ،
 عددياً. 𝐴حساب التكاملات في 
في تقريب برنشتاين لمدالة المجيولة  (13)-(11)الناتجة عن حل جممة المعادلات  𝑐𝑖بتعويض قيم 

 عمى شكل كثيرة حدود تقريبية. (1)فريدىولم التكاممية -يتم استيفاء حل معادلة فولتيرا ،(5)المعرف في 
 تقنية الحل العددي لمعادلة فولتيرا التكاممية من النوع الثاني:

( وفق تقريب برنشتاين عددياً يتم 2لحل معادلة فولتيرا التكاممية من النوع الثاني المعرفة في العلاقة )
𝛽اتباع ذات الخطوات السابقة مع فرض  =  عمى (13)-(11)، وبذلك تصبح جممة المعادلات الخطية 0

 :النحو التالي



 University Journal. Basic Sciences Series Tartous 5202( 1( العدد )9الأساسية المجلد ) العلمية العلوممجلة جامعة طرطوس 

 

49 
 

(
14) 𝐴 = *

.
𝑛
𝑖

/

(𝑏 − 𝑎)𝑛
((𝑥𝑗 − 𝑎)

𝑖
(𝑏 − 𝑥𝑗)

𝑛−𝑖
− 𝛼 ∫ 𝑘1(𝑥𝑗 , 𝑡)

𝑥𝑗

𝑎

(𝑡 − 𝑎)𝑖(𝑏 − 𝑡)𝑛−𝑖𝑑𝑡)+ ,

𝑖, 𝑗 = 0,1, … 𝑛 , 

 

(
15) 

𝑋 = ,𝑐𝑖-
𝑇 , 𝑖 = 0,1, … , 𝑛  

(
16) 

𝑌 = [𝑔(𝑥𝑗)]
𝑇

 , 𝑗 = 0,1, … , 𝑛 .  

𝑖من أجل  𝑐𝑖( يتم الحصول عمى قيم الثوابت المجيولة 16)-(14بحل جممة المعادلات ) = 0,1, … 𝑛 ،
يتم استيفاء حل معادلة فولتيرا التكاممية من النوع الثاني عمى شكل كثيرة  𝑓(𝑥)وبتعويضيا في تقريب برنشتاين لمدالة 

 حدود تقريبية.
 تقنية الحل العددي لمعادلة فريدىولم التكاممية من النوع الثاني:

𝛼( وفق تقريب برنشتاين عددياً يتم فرض 3لحل معادلة فريدىولم التكاممية المعرفة في العلاقة ) = لتصبح  0
 ( بالصيغة التالية:13)-(11جممة المعادلات الخطية )

(
17) 𝐴 = *

.
𝑛
𝑖

/

(𝑏 − 𝑎)𝑛
((𝑥𝑗 − 𝑎)

𝑖
(𝑏 − 𝑥𝑗)

𝑛−𝑖
− 𝛽 ∫ 𝑘2(𝑥𝑗 , 𝑡)

𝑏

𝑎

 (𝑡 − 𝑎)𝑖(𝑏 − 𝑡)𝑛−𝑖𝑑𝑡)+ ,

𝑖, 𝑗 = 0,1, … 𝑛 , 

 

(
18) 

𝑋 = ,𝑐𝑖-
𝑇 , 𝑖 = 0,1, … , 𝑛  ,  

(
19) 

𝑌 = [𝑔(𝑥𝑗)]
𝑇

 , 𝑗 = 0,1, … , 𝑛 .  

𝑖من أجل  𝑐𝑖( يتم الحصول عمى قيم الثوابت المجيولة 19)-(17أيضاً بحل جممة المعادلات ) = 0,1, … 𝑛 ،
يتم استيفاء حل معادلة فريدىولم التكاممية من النوع الثاني عمى شكل كثيرة  𝑓(𝑥)وبتعويضيا في تقريب برنشتاين لمدالة 

 حدود تقريبية.
 النتائج العددية:

حيث سيتم اقتراح مجموعة من الأمثمة العددية لاختبار فعالية الطريقة المقترحة في حل المعادلات العددية، 
الأخطاء المطمقة وبالتالي كفاءة الطريقة، تم إعداد البرامج وذلك لبيان تمتمك جميع المعادلات المقترحة حمولًا تحميمية 

نشاء جميع الرسومات البيانية ودراسة الخطأ وتنفيذ خوارزمية الطريقة باستخدام لغة البرمجة   .Mathematicaوا 
 [28]التكاممية من النوع الثاني التالية:فريدىولم -معادلة فولتيرافرض لن :(0)المثال 

(
21) 𝑓(𝑥) = 𝑒𝑥 + 𝑒𝑥(𝑥 − 1) − 𝑥𝑒 − 𝑥2(𝑒𝑥 − 1) + 1 + ∫(𝑥2 − 𝑡)𝑓(𝑡) 𝑑𝑡

𝑥

0

+ ∫(𝑥𝑡 + 𝑥)

1

0

𝑓(𝑡)𝑑𝑡 ; 0 ≤ 𝑥 ≤ 1, 

 

𝑓(𝑥)حيث أن الحل الدقيق ىو  = 𝑒𝑥. 
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𝑛، سنأخذ ىنا 𝑛قيمة اختيارية لـ  باتباع الطريقة المقترحة من أجل = يتم الحصول عمى الحل ، 9
 :ةبالصيغة التاليمن الدرجة التاسعة ( عمى شكل كثيرة حدود 21التقريبي لممعادلة )

(
21) 

𝑓(𝑥) = 1. +𝑥 + 0.5 𝑥2 + 0.166667 𝑥3 + 0.0416661 𝑥4 + 0.00833527 𝑥5

+ 0.00138486 𝑥6 + 0.000203708 𝑥7 + 0.0000205853 𝑥8

+ 4.56391 ∗ 10−6𝑥9. 

 

 ،الطريقة المقترحةاستخدام الرسم البياني لمحل الدقيق والحل التقريبي الناتج عن إلى  (2)الشكل  يشير
بالإضافة  .-0,1,عمى المجال  الناتج عن ىذه الطريقة الرسم التوضيحي لمخطأ المطمق (3)ويوضح الشكل 

الحل العددي ومقدار الخطأ ومقارنة بين الخطأ المطمق لمطريقة المقترحة من أجل ( 1) إلى ذلك، يبين الجدول
𝑛 =  .[28]( في 21والطريقة التي تم استخداميا بناءً عمى كثيرات حدود لاغرانج لحل المعادلة ) 9
 

 
𝒏من أجل  (0): الحل الدقيق والتقريبي لممثال (0)الشكل  = 𝟗. 

 
,𝟎,المجال  ( عمى0): الخطأ المطمق الناتج عن حل المثال (3)الشكل  𝟏-. 

 حيث [28]طريقة الو  n=9ومقدار الخطأ المطمق لمطريقة المقترحة من أجل  (0)لممثال : الحل العددي الدقيق والتقريبي (0)جدول 
𝒏 = 𝟓. 

مقدار الخطأ المطمق 
 n=5و  [28]بالطريقة 

مقدار الخطأ المطمق 
𝑛بالطريقة المقترحة = 9 

 x الحل الدقيق الحل التقريبي

0 4.551914400963142

× 10
−12 

0.9999999999999954 1 0 
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2.554577710256
× 10−6 

3.1943336864515

× 10
−12 

1.4918246976444647 1.4918246976412713 1.4 

3.878669883494
× 10−6 

4.9658055445434

× 10
−12 

1.8221188003954747 1.8221188113915189 1.6 

7.751094385444
× 10−6 

1.057509635415954

× 10
−11 

2.71828182846962 𝑒 1. 

 
 [28]فريدىولم التكاممية من النوع الثاني التالية:-معادلة فولتيرا لدينا: (0)المثال 

(
22) 𝑓(𝑥) = 2 cos(𝑥) − 𝑥𝑐𝑜𝑠(2) − 2𝑥𝑠𝑖𝑛(2) + 𝑥 − 1 + ∫(𝑥 − 𝑡)𝑓(𝑡)𝑑𝑡

𝑥

0

+ ∫ 𝑥𝑡 𝑓(𝑡)𝑑𝑡; 0 ≤ 𝑥 ≤ 2,

2

0

 

 

𝑓(𝑥)حيث أن الحل الدقيق ىو  = cos (𝑥).  باتباع الطريقة المقترحة من أجل𝑛 = يتم الحصول عمى  9
 ( عمى شكل كثيرة حدود من الدرجة التاسعة بالصيغة التالية:22الحل التقريبي لممعادلة )

(
23) 

𝑓(𝑥) = 1. − 8.44643 ∗ 10−7 𝑥 − 0.5 𝑥2 − 2.01437 ∗ 10−7 𝑥3 +  1.141667 𝑥4

− 1.14487 ∗ 10−6 𝑥5 − 0.00138647 𝑥6  −  3.28415 ∗ 11
−6

 𝑥7  

+ 0.0000275609 𝑥8 − 1.31519 ∗ 10−6 𝑥9. 

 

إلى الرسم البياني لمحل الدقيق والحل التقريبي الناتج عن استخدام الطريقة المقترحة، ويوضح  (4)يشير الشكل 
  .-0,2,الرسم التوضيحي لمخطأ المطمق الناتج عن ىذه الطريقة عمى المجال  (5)الشكل 

 
𝒏من أجل  (0): الحل الدقيق والتقريبي لممثال (2)الشكل  = 𝟗. 

الحل العددي ومقدار الخطأ ومقارنة بين الخطأ المطمق لمطريقة المقترحة  (2)بالإضافة إلى ذلك، يبين الجدول 
𝑛من أجل  = وذلك من  [28]( في 22والطريقة التي تم استخداميا بناءً عمى كثيرات حدود لاغرانج لحل المعادلة ) 9

 .𝑥أجل قيم مختمفة لـ 
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,𝟎,عمى المجال  (0): الخطأ المطمق الناتج عن حل المثال (2)الشكل  𝟐-. 

من أجل  [28]طريقة الو  n=9 حيثومقدار الخطأ المطمق لمطريقة المقترحة  (0)الحل العددي الدقيق والتقريبي لممثال (: 0)جدول 
𝒏 = 𝟗. 

مقدار الخطأ المطمق 
 n=9و [28]بالطريقة 

مقدار الخطأ 
المطمق بالطريقة 

𝑛 المقترحة = 9 

 x الحل الدقيق الحل التقريبي

5.694289484381e-
11 

1.89176

× 10
−7 

0.9754147937000895 1.9754149828762375 0.2222 

9.869005612728e-
11 

3.87730

× 10
−7 

0.9028683899079437 1.9128687776389113 1.4444 

2.697743139989e-
10 

1.1433

× 10
−6 

0.4436748360623017 1.44367597936596415 1.1111 

7.011126679223e-
10 

6.91356

× 10
−6 

−0.4161399229870788 −1.4161468365471424 2
. 

 
 [29]نفرض لدينا معادلة فريدىولم التكاممية من النوع الثاني بالصيغة التالية: :(3)المثال 

(
24) 𝑓(𝑥) − ∫ 2 𝑒𝑥𝑒𝑡  𝑓(𝑡)𝑑𝑡 = 𝑒𝑥,

1

0

 
 

𝑓(𝑥)حيث أن الحل الدقيق ىو  =
𝑒𝑥

2−𝑒2.  باتباع الطريقة المقترحة من أجل𝑛 = يتم الحصول  13
 بالصيغة التالية: 13( عمى شكل كثيرة حدود من الدرجة 24عمى الحل التقريبي لممعادلة )

(
25) 

𝑓(𝑥) = −0.185561 −  0.185561 𝑥 −  0.0927806 𝑥2  −  0.0309269 𝑥3  −   
                     1.11773172 𝑥4  −  0.00154633 𝑥5  −  0.0002578 𝑥6  −  0.0000366042 𝑥7  

−  5.12368 ∗ 11
−6

 𝑥8 + 6.93399 ∗ 10−8 𝑥9 − 5.97815 ∗ 10−7𝑥10

+ 3.31259 ∗ 11
−7

 𝑥11 − 1.20615 ∗ 10−7 𝑥12 + 1.9144 ∗ 10−8 𝑥13. 

 

إلى الرسم البياني لمحل الدقيق والحل التقريبي الناتج عن استخدام الطريقة المقترحة،  (6)يشير الشكل 
  .-0,1,الرسم التوضيحي لمخطأ المطمق الناتج عن ىذه الطريقة عمى المجال  (7)الشكل  ويمثل
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𝒏من أجل  (3)الحل الدقيق والتقريبي لممثال  :(6)الشكل  = 𝟏𝟑. 

 
,𝟎,عمى المجال  (3): الخطأ المطمق الناتج عن حل المثال (7)الشكل  𝟏-. 

الحل العددي ومقدار الخطأ ومقارنة بين الخطأ المطمق لمطريقة المقترحة  (3)بالإضافة إلى ذلك، يبين الجدول 
𝑛من أجل  = وذلك من أجل  [29]( في 22والطريقة التي تم استخداميا بناءً عمى قاعدة سيمبسون لحل المعادلة ) 13

 .𝑥قيم مختمفة لـ 
𝒏 حيث [29]طريقة الو  n=13 حيثومقدار الخطأ المطمق لمطريقة المقترحة  (3)الحل الدقيق والتقريبي لممثال : (3)جدول  = 𝟏𝟎. 

مقدار الخطأ المطمق 
 [29]بالطريقة 

n=10 

مقدار الخطأ 
المطمق بالطريقة 

 المقترحة
𝑛 = 13 

 x الدقيق الحل بالطريقة المقترحة التقريبيالحل 

1.830029e-04 
 

6.10623

× 10
−16 

−0.18556125259086217 −1.18556125259186279 0
.00 

 
2.470281e-04 

 
2.553512

× 10
−15 

−0.250481491154609 −1.25148149115461155 1.3 

3.685226e-04 
 

3.7830849

× 10
−13 

−0.37367447480684124 −1.37367447481646293 0
.7 
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4.974534e-04 
 

5.8907323

× 10
−12 

−0.5044077809897319 −1.5144177819838412 1. 

 
 [29]معادلة فريدىولم التكاممية من النوع الثاني بالصيغة التالية:لنأخذ  :(2)المثال 

(
26) 𝑓(𝑥) − ∫

4

𝜋

𝜋
2

0

cos(𝑥 − 𝑡) 𝑓(𝑡)𝑑𝑡 = −
2

𝜋
cos(𝑥) ; 0 ≤ 𝑥 ≤

𝜋

2
  . 

 

𝑓(𝑥)حيث أن الحل الدقيق ىو  = sinx  
𝑛باتباع الطريقة المقترحة من أجل  = ( عمى شكل كثيرة حدود من 26يتم استيفاء الحل لممعادلة ) 10

 بالصيغة التالية:  العاشرةالدرجة 
(27) 

𝑓(𝑥) = −4.25927 ∗ 10−9 + 1. 𝑥 +  1.89687 ∗ 10−9 𝑥2  −  0.166667 𝑥3  −  1.86814

∗ 11
−8

 𝑥4  +  0.00833341 𝑥5  −  2.01003 ∗ 10−7 𝑥6  − 1.111198158 𝑥7  

−  4.13701 ∗ 10−7 𝑥8  +  3.06201 ∗ 10−6 𝑥9  −  1.31127 ∗ 11
−7

 𝑥10 .  
إلى الرسم البياني لمحل الدقيق والحل التقريبي الناتج عن استخدام الطريقة المقترحة،  (8)يشير الشكل 

,0,يقة عمى المجال الرسم التوضيحي لمخطأ المطمق الناتج عن ىذه الطر  (9)الشكل  ويبين
𝜋

2
بالإضافة إلى  .-

ومقدار الخطأ ومقارنة بين الخطأ المطمق لمطريقة المقترحة من أجل  التقريبيالحل  (4)ذلك، يبين الجدول 
𝑛 = وذلك من أجل  [29]( في 22والطريقة التي تم استخداميا بناءً عمى قاعدة سيمبسون لحل المعادلة ) 10

 .𝑥قيم مختمفة لـ 

 
𝒏من أجل  (2)الحل الدقيق والتقريبي لممثال : (8)الشكل  = 𝟏𝟎. 
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,𝟎,عمى المجال  (2)الخطأ المطمق الناتج عن حل المثال : (9)الشكل 

𝝅

𝟐
-. 

𝒏من أجل  [29]طريقة الو  n=10ومقدار الخطأ المطمق لمطريقة المقترحة من أجل  (2): الحل الدقيق والتقريبي لممثال (2)جدول  =

𝟏𝟎. 
مقدار الخطأ المطمق 

 [29]بالطريقة 
n=10 

مقدار الخطأ 
المطمق بالطريقة 

 المقترحة
𝑛 = 10 

 x الدقيق الحل الحل التقريبي بالطريقة المقترحة

3.241537e-03 
 

4.2592

× 10
−9 

−4.2592 × 10
−9 1. 0.00 

 
3.830231e-03 

 
3.93730

× 10
−9 

0.45377762313823666 1.4537776271755451 1.471 

3.583984e-03 
 

2.757983

× 10
−9 

0.8087360577951463 1.8187361615531312 0.942 

2.074933e-03 
 

2.636016

× 10
−8 

1.000000005618781 1.9999999792586128 1.571 

 [30]من النوع الثاني ذات الصيغة التالية:التكاممية لنأخذ معادلة فولتيرا : (2)مثال 
(

28) 𝑓(𝑥) = 𝑥 + ∫(𝑡 − 𝑥) 𝑓(𝑡)𝑑𝑡,

𝑥

0

 𝑥 ∈ ,0,1- 
 

𝑓(𝑥)حيث أن الحل الدقيق ىو  = sinx . باتباع الطريقة المقترحة من أجل𝑛 = يتم استيفاء الحل  3
 ( عمى شكل كثيرة حدود من الدرجة الثالثة بالصيغة التالية: 28لممعادلة )
(

29) 
𝑓(𝑥) =  −3.53612 ∗ 10−8  +  1.00354 𝑥 −  0.0178457 𝑥2 −  0.144247 𝑥3.  

 
( 4في ىذا المثال سوف نوضح بالتفصيل كيف تم تطبيق الطريقة المقترحة وكيف تم تطبيق العلاقات من )

التي تمثل الحل التقريبي بصيغة كثيرة حدود لممعادلة  𝑓(𝑥)( لمحصول عمى الصيغة النيائية لمدالة 19ولغاية )
 (.28التكاممية )

𝑛في البداية من أجل  = 𝜀و  3 = ( عمى 11المعرفة في العلاقة ) 𝑥𝑗يتم الحصول عمى النقاط  0.00001
𝑥0 :النحو التالي = 0.00001 ،𝑥1 = 0.333343 ،𝑥2 = 𝑥3و  0.666677 = ، ثم بالاستفادة من 0.99999
𝐴𝑋لتشكيل جممة المعادلات الخطية  𝑌و  𝐴( يتم حساب المصفوفات 16)-(14العلاقات ) = 𝑌 :عمى النحو التالي 
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𝐴 = (

0.99997
0.0000299994

2.99997 × 10−10

1.× 10−15

0.336203
0.457408
0.224702

0.0372462

0.153909
0.29135

0.474076
0.302894

0.199998
0.149998
0.100027
1.04997

) 

  و

𝑌 = (

0.00001
0.333343
0.666677
0.99999

) 

𝐴𝑋 بحل جممة المعادلات الخطية = 𝑌  مجاىيل يتم حساب مصفوفة  4ومعادلات  4المكونة من
 ىيلالمجا

𝑋 = (

𝑐0

𝑐1
𝑐2

𝑐3

) = (

−3.53612 × 10−8

0.334512
0.663076
0.841443

) 

𝑛من أجل  𝑝𝑛,𝑖(𝑥)( يتم حساب كثيرات حدود برنشتاين 4ثم بالاستفادة من العلاقة ) = و  3
𝑖 = 0,1 … , 𝑛 :عمى النحو التالي 

𝑝𝑛,0(𝑥) = 1 − 3𝑥 + 3𝑥2 − 𝑥3 ،𝑝𝑛,1(𝑥) = 3𝑥 − 6𝑥2 + 3𝑥3 ،𝑝𝑛,2(𝑥) = 3𝑥2 −

3𝑥3 و𝑝𝑛,3(𝑥) = 𝑥3. 
𝑖من أجل  𝑝𝑛,𝑖و  𝑐𝑖الآن بتعويض قيم  = 1, … , 𝑛 ( نحصل عمى كثيرة الحدود 5في العلاقة ،)

𝑓(𝑥) ( بالشكل التالي:28التي تمثل الحل التقريبي لممعادلة التكاممية ) 
𝑓(𝑥) = 𝑐0. 𝑝𝑛,0(𝑥) + 𝑐1. 𝑝𝑛,1(𝑥) + 𝑐2. 𝑝𝑛,2(𝑥) + 𝑐3. 𝑝𝑛,3(𝑥) 

 :( بالصيغة التالية29ما في العلاقة )ك 𝑓(𝑥)بالتعويض نحصل عمى الحل التقريبي 
𝑓(𝑥) =  −3.53612 × 10−8  +  1.00354 𝑥 −  0.0178457 𝑥2 −  0.144247 𝑥3. 

إلى الرسم البياني لمحل الدقيق والحل التقريبي الناتج عن استخدام الطريقة المقترحة،  (11)يشير الشكل 
بالإضافة إلى  .-0,1,الرسم التوضيحي لمخطأ المطمق الناتج عن ىذه الطريقة عمى المجال  (11)الشكل  ويمثل

الحل التقريبي ومقدار الخطأ ومقارنة بين الخطأ المطمق لمطريقة المقترحة من أجل  (5)ذلك، يبين الجدول 
𝑛 =  .𝑥ختمفة لـ وذلك من أجل قيم م [30]( في 28والطريقة التي تم استخداميا لحل المعادلة ) 3
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𝒏من أجل  (2)الحل الدقيق والتقريبي لممثال  (:01)الشكل  = 𝟑. 

 
,𝟎,عمى المجال  (2): الرسم البياني لمخطأ المطمق الناتج عن حل المثال (00)الشكل  𝒏من أجل  -𝟏 = 𝟑. 

𝒏ومقدار الخطأ المطمق لمطريقة المقترحة من أجل ( 2)الحل الدقيق والتقريبي لممثال : (2)جدول  = 𝒏من أجل  [30]طريقة الو  𝟑 = 𝟑. 
مقدار الخطأ المطمق 

 [30]بالطريقة 
n=3 

مقدار الخطأ المطمق 
 بالطريقة المقترحة

𝑛 = 3 

الحل التقريبي بالطريقة المقترحة من 
𝑛أجل  = 3 

 x الدقيق الحل

0.00E+00 3.536123

× 10
−8 

−3.536123 × 10
−8 1. 0.00 

 
6.14E-03 

 
7.50929 × 10

−6 0.32687218368364096 1.3268796929757318 1.333 

1.13E-02 0.0000179756 0.6178277652863591 1.6178457418525216 0.666 
1.45E-02 0.0000275687 0.8414434160974062 1.8414719848178965 1. 

 [31]فولتيرا التكاممية من النوع الثاني ذات الصيغة التالية:لنأخذ معادلة : (6)مثال 
(

30) 𝑓(𝑥) = 𝑥 + 1 + ∫(𝑥 − 𝑡) 𝑓(𝑡)𝑑𝑡,

𝑥

0

 
 

𝑓(𝑥)حيث أن الحل الدقيق ىو  = 𝑒𝑥 . باتباع الطريقة المقترحة من أجل𝑛 = يتم استيفاء الحل لممعادلة  5
 ( عمى شكل كثيرة حدود من الدرجة الخامسة بالصيغة التالية: 31)
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(
31) 

𝑓(𝑥) = 1.1.00008 𝑥 + 0.499069 𝑥2 + 0.170409 𝑥3 + 1.1348664 𝑥4

+ 0.0138545 𝑥5 . 
 

إلى الرسم البياني لمحل الدقيق والحل التقريبي الناتج عن استخدام الطريقة المقترحة،  (12)يشير الشكل 
بالإضافة  .-0,1,الرسم التوضيحي لمخطأ المطمق الناتج عن ىذه الطريقة عمى المجال  (13)ويوضح الشكل 

الحل التقريبي ومقدار الخطأ ومقارنة بين الخطأ المطمق لمطريقة المقترحة من أجل  (6)إلى ذلك، يبين الجدول 
𝑛 =  .𝑥وذلك من أجل قيم مختمفة لـ  [31]( في 31والطريقة التي تم استخداميا لحل المعادلة ) 5

 
𝒏من أجل  (6)الحل الدقيق والتقريبي لممثال  :(00)الشكل  = 𝟓. 

 
,𝟎,عمى المجال  (6)الرسم البياني لمخطأ المطمق الناتج عن حل المثال : (03)الشكل  𝒏من أجل  -𝟏 = 𝟓. 

𝒏ومقدار الخطأ المطمق لمطريقة المقترحة من أجل  (6)الحل الدقيق والتقريبي لممثال : (6)جدول  = 𝒏من أجل  [31]طريقة الو  𝟓 = 𝟓. 
مقدار الخطأ المطمق بالطريقة 

[31] 
n=5 

مقدار الخطأ 
المطمق بالطريقة 

 المقترحة
𝑛 = 5 

الحل التقريبي بالطريقة المقترحة من 
𝑛أجل  = 5 

 x الدقيق الحل

9.14935032181319e-
08 
 

3.3238

× 10
−8 

1.2214027913981653 1.2214127581611699 0.2 

6.03097460372126e-
06 
 

 

8.18886

× 10
−8 

1.491824779529862 1.4918246976412713 0.4 
 

7.08003905089960e-
05 
 

1.32289

× 10
−7 

1.8221189326798193 1.8221188113915189 0.6 
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4.10261825801062 
e-04 
 

1.85133

× 10
−7 

2.2255411136251477 2.225541928492468 
 

0.8 
 

1.61516179237875 
e-03 

 

2.61664

× 10
−7 

2.718282090122967 2.718281828459145 1. 

 

 :الاستنتاجات والتوصيات
تم تطبيقيا لحل مسائل  ،تستخدم كثيرات حدود برنشتاين وتقريب برنشتاين تم في ىذا البحث تطوير تقنية عددية

التكاممية المجزأة من النوع  فريدىولم-متنوعة من المعادلات التكاممية من نوع فولتيرا وفريدىولم وأيضاً معادلة فولتيرا
ية دالثاني، تمتاز الطريقة المقترحة بالفعالية والدقة وسرعة الأداء عند تطبيقيا عمى الحاسوب، حيث أشارت النتائج العد

الأمثمة والرسوم البيانية والجداول ومقارنة الأخطاء المطمقة فعالية وكفاءة الطريقة المقترحة في حل الأنواع  متضمنةً 
فريدىولم التكاممية المجزأة من النوع الثاني بالإضافة إلى معادلتي فولتيرا -ث من المعادلات التكاممية معادلة فولتيراالثلا

، حيث أثبتت النتائج العددية دقة الطريقة وأفضميتيا عمى بمقدار خطأ صغير وفريدىولم التكامميتين من النوع الثاني
بالإضافة إلى  حل التقريبي لممعادلة التكاممية واستيفاءه عمى شكل كثيرة حدودق الأخرى في الوصول لمائالعديد من الطر 

ي، نوصي بتطبيق التقنية المقترحة وتطوير تقنيات مشابية لحل بما يخص التطبيق الحاسوبالسرعة الكبيرة في الأداء 
 أىمية كبيرة في المجالات العممية. لياأنواع أخرى من المعادلات المعقدة والتي 
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